Как работает 3d-принтер? просто о сложном

По страницам истории

По мнению многих компьютерных экспертов, родоначальником 3D-печати и разработчиком первого еще обычного принтера стал англичанин Бэббидж. В 1822 году он приступил к созданию так называемой «большой разностной машины», предназначенной для производства расчетов и их распечатки. Как все великое, идеи Бэббиджа намного опередили свое время и, спустя 20 лет, так и не реализованный, проект был закрыт.

Большая разностная машина Бэббиджа

Прошло более 100 лет, прежде чем была предпринята вторая на сей раз более удачная попытка создания принтера. Первый черно-белый принтер увидел свет в 1953 году. Минуло еще 23 года и компания IBM создает первый струйный цветной принтер. Сегодня количество принтеров в офисах и других организациях уступает разве что числу компьютеров.

Во второй половине 80-х годов происходит очередной технологический прорыв. В 1986 году американец Чек Халл сформулировал концепцию трехмерной печати, а через два года его соотечественник Скот Крамп на ее основе разработал технологию FDM — формования через декомпозицию плавящегося материала. Все ныне действующие трехмерные принтеры своим появлением обязаны именно ей.

Конвейерная 3D-печать

Первой по распространённости стала технология 3D-печати FDM/FFF. Она работает по принципу плавления пластиковой нити и послойному формированию 3D-модели и за последний год не претерпела никаких инноваций. Все ведущие мировые производители впали в своеобразную спячку и, в отсутствии выставок, конференций и других значимых событий, не предъявили рынку никаких значимых новинок. Пожалуй, единственным заметным событием стал анонс появления 3D-принтеров ленточного типа с условно бесконечным размером модели по оси Z. Первым такую модель показал мировой лидер в производстве настольных 3D-принтеров – компания Creality, которая в содружестве с известным блогером Наоми Ву (Naomi Sexy Cyborg Wu) представила принтер 3DPrintMill CR-30. А в след за ними свою версию этого решения анонсировал молодой стартап из Германия – iFactory3D. В этом году мы увидим битву между этими компаниями за лидерство в этом новом сегменте 3D-печати.

Хотя сама идея использования ленты не новая, она уже довольно давно была представлена принтерами американской компании BlackBelt 3D. До этого она не находила широкого распространения в силу высокой стоимости. Новые же игроки предлагают свои модели в ценовой категории до 100 тысяч рублей, и поэтому их привлекательность будет существенно выше для покупателей. Такое бюджетное решение позволит легко организовать мелкосерийное производство необходимых деталей практически без участия человека, необходимо будет только вовремя устанавливать новые катушки с нитью. Это важный шаг для начала использования 3D-принтеров не только как оборудования для прототипирования, но и как производственного оборудования, что открывает для 3D-печати огромные перспективы.  

Ну а пока это только планы на будущее, основные усилия производителей 3D-принтеров направлены на фейс-лифтинг и рестайлинг своих моделей, когда обновленные модели дополняются цветным тачскрин дисплеем, Wi-Fi, веб-камерой и прочим функционалом, напрямую не влияющим на качество и скорость печати. Это в целом улучшает пользовательский опыт и упрощает возможность начала работы с принтером новых пользователей, особенно, из поколения, выросшего в эпоху гаджетов. Однако, это никак не решает основных проблем 3D-печати – низкую скорость и недостаточно хорошее качество конечных изделий. Вывод из всего этого можно сделать следующий: возможно, будущее 3D-печати лежит в области новых материалов, и технология FDM/FFF уже достигла своего пика. У нее по-прежнему есть масса преимуществ: прежде всего, низкая стоимость сырья, универсальность (на одном принтере можно создавать абсолютно разные модели), легкость в постобработке, простота использования, что отлично подходит для школьников и студентов, для которых 3D-печать, наряду с 3D-моделированием открывает массу возможностей для будущей профессиональной реализации.

Как работает 3D принтер: Видео

По окончанию работы принтера получается необходимый физический объект. Лишняя пудра просто сдувается с модели. Однако изделие все еще не готово. На данной стадии деталь очень пористая и хрупкая. Для придания ей жесткости и прочности изделие помещается в специальный контейнер, который засыпается бронзовой пудрой, и все это помещается в специальную печь, для сплавления молекул металла между собой и насыщения изделия бронзой.

Конечно, весь этот процесс занимает достаточно много времени, однако все равно изготовление детали происходит существенно быстрее, чем традиционным способом. Кроме этого такое производство существенно дешевле. Такой же принцип работы имеют и принтеры, печатающие стеклом.

Зачем?

Первое, что нужно для себя понять — а зачем, собственно, нужен 3D-принтер? Что мы хотим — просто развлекаться и создавать модели и макеты? Использовать принтер для ведения бизнеса? Воплощать творческие фантазии? Бизнес, конечно, оценил 3D-печать давно: такие мировые промышленные гиганты, как Airbus, Boeing, General Electric, Ford, Siemens, NASA используют их постоянно; и это не говоря уже об инженерах, ученых, медиках и огромном количестве мелких предпринимателей.

Дома 3D-принтер открывает широчайшие возможности использования и применения своей фантазии, и поскольку самые дешевые модели стоят от 20 тыс. рублей и выше, они доступны практически каждому человеку с компьютером.

Применений на самом деле можно найти массу. Кто-то задумает сделать себе стол с макетами, воссоздающие какую-нибудь область реально существующую или фантастическую (скажем, поверхность планеты из «Звездных войн»). Кто-то напечатает себе солдатиков и вспоминает детство. А кто-то печатает паззлы детям, придумывая все новые и новые варианты. К тому же можно создать работоспособный макет чего-то более сложного.

А один индивидуум вообще напечатал себе пластиковый и полностью работоспособный пистолет, который не виден на металлодетекторах. В связи с этим законники некоторых стран уже начинают беспокоиться на тему срочного внесения поправок в соответствующие законы, дабы не превратить новую технологию в оружие массового уничтожения (хотя Форд тоже не отвечал за то, что кто-то совершал ограбления, пользуясь его машинами).

В общем, резюмируя, можно выделить несколько основных преимуществ 3D-принтеров: домашнее творчество, использование более сотни различных типов материалов (не только огромное количество самых разнообразных пластиков и полимерных смол, но и металлы, бумага, керамика, ткань, пищевые продукты, соль, лунный и марсианский грунт и даже живые клетки!), универсальность и снижение трудоёмкости (один принтер может заменить несколько сложных агрегатов), простота в использовании (об этом мы поговорим далее), экономичность, быстрота создание объектов и гибкость технологии.

Кстати, в сферу применения можно включить и медицину: инновационная биомедицинская печать сможет предложить в ближайшем будущем искусственные органы и ткани тела, а сегодня уже можно печатать протезы и хирургические имплантаты.

FDM=»ltr»>

Моделирование методом послойного наплавления (FDM), также известное как производство способом наплавления нитей (FFF) — самый популярный и массовый тип 3D-печати.

Стандартное FDM-устройство работает как термоклеевой пистолет управляемый роботом, что не удивляет, ведь разработка технологии FDM когда-то начиналась с опытов с термоклеем. Пластиковый пруток проталкивается через горячее сопло, где он плавится, а выходя из него укладывается слоями. Процесс повторяется снова и снова, пока не появится готовый 3D-объект.

Единственное отличие в том, что 3D-принтеры используют не стержни термоклея, а пластиковый филамент намотанный на катушки.

Самые распространенные материалы для FDM (FFF) — пластики ABS и PLA.

Пластиковая нить, она же филамент, выпускается в такой форме для того, чтобы она могла легко плавиться при заданной температуре, но очень быстро застывать — после охлаждения всего на пару градусов. Именно это и позволяет печатать 3D изделия со сложной геометрией с высокой точностью.

Проще говоря, 3D-печать отличается от традиционной 2D-печати только тем, что повторяется снова и снова, создавая слой за слоем, один на поверхности другого. В конце концов, тысячи слоев образуют 3D-объект.

Технология НРМ (FDM) HPM

Эта технология может изготавливать не просто модели, а полностью готовые детали из различных видов пластика. К ее достоинствам следует отнести возможность использования промышленного сырья, в то время как на других устройствах это невозможно. Детали, созданные по технологии НРМ (FDM) HPM обладают отличной стойкостью к любым видам воздействий, а так же высокой прочностью.

Печать с применением технологии НРМ отличается хорошей гладкостью поверхности, легкостью в эксплуатации и способностью работать в офисе. Объекты, изготовленные из термопластика, обладают хорошей стойкостью к повышенным температурам, механическим воздействиям, разным химическим реагентам, а также влажной и сухой среде.

Растворимые сопутствующие материалы дают возможность изготавливать довольно сложные многоуровневые формы, а также полости и отверстия, которые получить обычными средствами очень сложно. Принтеры, работающие НРМ, изготавливают детали путем нанесения серии слоев, один на другой, при этом металл разогревается до полужидкого состояния и выдавливается через сопло, на определенные места, запрограммированные на ПК.

Чтобы производить печать с применением методики НРМ используют сразу два разных материала, основной нужен для создания самой детали, а дополнительный для поддержки. Нити и того и другого металла подводятся в головку устройства, которая движется и налаживает металл, образовывая слой. После завершения очередного слоя, платформа опускается, и головка принимается за следующий слой. Когда 3D-принтер уже закончит производство детали, нужно отделить вспомогательный металл, либо растворить его моющим средством. Изделие готово к работе.

Сегодня большой популярностью пользуются не только автоматические устройства HPM, но и ручные их версии. Такие аппараты, по сути, являются ручками для изготовления 3D объектов. Такие ручки сделаны, как и автоматические принтеры, с той лишь разницей, что их головку человек держит в руке и дозирует наплавляемый материал.

Естественно что, как и технологии, сами аппараты тоже отличаются друг от друга. Если у вас модель типа SLA, то работать по методу SLS он не сможет, т. е. любой из принтеров способен обрабатывать детали только по своей индивидуальной технологии.

Как пользоваться и печатать

Предварительные настройки (список)

До начала работы пользователь должен выполнить ряд подготовительных мероприятий:

  1. Подготовить место, где будет производиться печать.
  2. Заправить устройство расходными материалами.
  3. Подключить принтер к персональному компьютеру или ноутбуку.
  4. Проверить проходимость экструдера.
  5. Выполнить калибровку движения печатающей каретки.
  6. Загрузить модель в программу для печати.

Непосредственно в процессе:

  1. Следить за нагревом подложки и сопла.
  2. Постоянно вести наблюдение за температурным режимом.
  3. Управлять скоростью подачи расходника.
  4. Вовремя проводить замену бобин с пластиком на нить другого цвета или если она закончилась.

Но также обратите внимание на такие «моменты»:

  • Калибровка. Прежде чем запустить печать, калибруется движение печатающего механизма относительно платформы во всех направлениях с учетом расходного материала.
  • Температура. Задается температура плавления пластика. Необходимо добиться того, чтобы слои пластика не накладывались друг на друга, но и пустого пространства между ними не было. Для этого разработан ряд утилит, применяются пробные модели.
  • Время создания объекта. Время печати детали зависит от ее габаритов, быстродействия принтера и его точности. Чем выше точность исполнения, тем дольше печатается модель: от нескольких минут до пары часов.

Трехмерная печать плотно вошла в человеческую деятельность. Приобрести принтер или собрать его как сложный конструктор для взрослых смогут многие, как и научиться создавать трехмерные модели. Кто знает, может в скором будущем люди научатся печатать отходами из мебельного производства для экономии экологического материала. Или смогут печатать камни с необычной геометрией для строительства изысканных сооружений по принципу полигональной кладки, которые обнаруживают по всему земному шару.

Принтер-гигант и принтер-ремонтник

Не все 3D-принтеры предназначены для одних и тех же действий. Так, например, в Центре аддитивных технологий «Ростеха» есть большой 3D-принтер, способный напечатать детали размером до полуметра. Такие использует Boeing: компания использует напечатанные титановые компоненты двигателей на пассажирском самолете Dreamliner 787.

При этом самолет — не единственное, что можно будет создавать на 3D-принтере. Например, стартап Relativity Space хочет в 2021 году запустить на орбиту первую в мире ракету, полностью напечатанную на 3D-принтере. И это не какие-то мечтатели, грезящие о звездах: они уже привлекли $700 млн инвестиций, а значит, в проект верят.

Футурология

Бизнес в космосе: предприниматели рассказали о трендах и будущем отрасли

Другой интересный объект — принтер-ремонтник. Он способен не только печатать детали по заданной программе, но и ремонтировать их. Работает эта машина немного иначе: по технологии прямой печати металлом.

Этот механизм состоит из двух основных элементов. Первый — источник лазерного излучения, второй — специальное сопло, через которое в струе инертного газа подается порошок. Струя газа и лазерный луч фокусируются в одной точке, где и происходит плавление порошка — и рост детали. Принтер позволяет ремонтировать сломанные части, а не выбрасывать их. При этом деталь не теряет своих исходных свойств.

Чтобы починить деталь, ее надо отсканировать. Другой вариант — задать управляющую программу, где есть 3D-модель этой детали со сломанным участком. Однако чаще всего используют 3D-сканер, который позволяет получить точный образец детали, которая уже есть. На основе этой модели разрабатывают управляющую программу по ремонту.

Индустрия 4.0

Создать своего цифрового двойника: как 3D-технологии меняют нашу жизнь

Принцип работы 3д-принтера

Как уже было замечено, на сегодняшний день в индустрии насчитывается уже несколько подвидов методов 3д-печати, а также весьма обширный набор соответствующего оборудования и конструкций.

Для того, чтобы рассмотреть принцип работы 3d-принтера обратимся к его ключевому элементу (головке экструдера) и методу объемной печати, использующей пластиковую нить.

Процесс 3д-печати:

Нить (филамент) поступает в печатающую головку (экструдер), после чего осуществляется разогрев нити до ее жидкого состояния. Далее полученная масса выдавливается через сопло экструдера. При этом шаговые двигатели с помощью зубчатых ремней приводят в движение Экструдер, который перемещается по направляющим в заданном направлении и наносит пластик на платформу слой за слоем согласно заданной модели.

Немного из истории 3D принтеров

Несмотря на то, что технология трехмерной печати находится у всех на слуху только последние несколько лет, ее появление стоит искать еще в прошлом веке. Пионером в данной области стала компания Charles Hull, которая в 1984 году разработала технологию трехмерной печати, а чуть позже запатентовала технику стереолитографии, которая сегодня используется повсеместно. Тогда же компания разработала и создала первый промышленный трехмерный принтер, который фактически стал началом новой эпохи.

90-е годы стали временем появления новых разработок в сфере трехмерной печати, благодаря которым 3D принтеры нашли применение в производственных условиях и стали использоваться для прототипирования. Пик развития технологии приходится на XXI век, и мы сами становимся очевидцами того, как семимильными шагами трехмерная печать покоряет новые вершины. Сегодня печать может осуществляться разными материалами, причем не только пластиками и металлом, но и тканью, бумагой, керамикой, пищевыми продуктами и даже живыми клетками.

В 2005 году появилась возможность печатать в цвете, а в 2006 году был создан принтер, который может распечатать около половины всех собственных комплектующих. В 2014 году появились первые принтеры с областью печати, практически неограниченной в размере. С помощью этого устройства уже попытались создать полноценный дом, используя в качестве основного материала бетон. На возведение такого сооружения было потрачено не более суток. Уже в 2016 году было представлено первое здание, построенное с помощью трехмерной печати в Дубае. В феврале 2017 года Россия также представила дом, целиком напечатанный на стройплощадке. В этом году также был разработан принтер с шестью осями, с помощью которого сложные элементы будет печатать намного проще, без необходимости использовать поддерживающие конструкции. На данный момент вовсю ведутся разработки принтеров, которые смогут печатать органы человека, протезы, имплантаты, корпусы автомобилей и даже еду.

Остальные отрасли применения

Уже сегодня ведущие работники медицины способны с помощью 3D принтера воссоздать отдельные участки человеческого скелета, благодаря которым проводить операции стало намного легче, а сами имплантаты лучше приживаются. Также широкой популярностью печатающие технологии пользуются и в стоматологической сфере, изготовленные таким образом имплантаты более качественные.

Сравнительно недавно ученым из Германии удалось напечатать человеческую кожу. Сырьем для ее создания служит гель, изготовленный из кожи донора. Еще в 2011 г. специалистам посчастливилось изготовить с помощью 3D принтера живую почку человека.

Как видно из выше сказанного, возможности 3D принтеров имеют огромный потенциал. Устройства, готовящие вкуснейшие блюда, делающие протезы и внутренние органы людей, игрушки и инструкции к эксплуатации, туфли и куртки — это уже не фантастика — а наше настоящее. А что ждет нас в скором будущем, на этот вопрос наверняка сможет ответить только фантаст с хорошим воображением.

Что такое 3D принтер

3D принтер – это устройство для создания физических объектов путем последовательного накладывания слоев. Другими словами 3Д принтер способен распечатать любой физический предмет, который смоделирован на ПК.

На сегодняшний день существуют различные модели 3D принтеров, которые способны работать с разными расходными материалами. Это означает, что при помощи трехмерной печати можно изготавливать любые детали для механизмов, которые смогут выдерживать высокие нагрузки, и не уступают деталям, сделанным традиционным способом.

Независимо от модели все современные 3D принтеры имеют одинаковый принцип работы.

Polyjet

Главное преимущество технологии Polyjet в ее мультиматериальности — многие Polyjet-принтеры способны печатать объект большим количеством различных материалов одновременно, что позволяет создавать изделия состоящие из участков с разными механическими и оптическими свойствами, то есть — разной твердости и цвета. Это фирменная технология ]Stratasys.

Пример: принтер Stratasys и напечатанные на нем кроссовки.

Polyjet 3D-принтеры распыляют крошечные капельки фотополимерной смолы на поверхность и полимеризуют их ультрафиолетовым излучением.

Этот процесс повторяется до тех пор, пока не будет создан объект. В отличие от FDM-принтеров, Polyjet-устройства могут наносить материал из многочисленных сопел одновременно.

Плюсы 3D-печати

Детали становятся легче

Это важно в авиастроении: сэкономленный вес можно использовать, например, для дополнительных пассажирских или багажных мест.
Экологичность. При создании деталей традиционным способом нужный элемент вырезают из куска металла, а остальное выбрасывают

Во время работы на 3D-принтере отходов практически нет.
Создание форм, которые невозможно воспроизвести другими способами.
Быстрая скорость создания деталей.

Стоит отметить, что на 3D-принтере вряд ли когда-нибудь будут печатать детали, которые дешево и быстро изготавливаются с помощью стандартных технологий.

Назначение 3D принтера

Быстрое развитие технологии 3D принтеров, и, как следствие, снижение стоимости 3D-печати привели к тому, что они появляются и в небольших компаниях, и дома у любого человека. Параллельно развиваются сервисы, которые по заказу изготавливают дешевые трехмерные модели изделий, дают возможность быстро распечатать нужную деталь, не выходя из своего дома. Возможности 3D-печати — неограниченные. На сегодня 3D принтер — это недорогое и доступное решение для всех сфер жизнедеятельности человека.

Где можно использовать 3D принтеры

В первую очередь назначение такого принтера — это быстрое изготовление прототипов моделей и объектов для дальнейшего совершенствования и доработки. На самом первом этапе создания проекта можно кардинально менять конструкцию узлов или даже всего объекта. Для инженеров этот подход существенно снижает затраты на проектирование, освоение и разработку новой продукции.
Также их можно использовать для быстрого изготовления узлов или деталей из материалов, которые поддерживаются 3D принтерами. Такое решение экономически выгодно для мелкого серийного производства. Изготовление моделей с прозрачной структурой позволяет увидеть работу механизма «изнутри» и оценить степень износа того или иного элемента. Это дает возможность совершенствовать технологию и производство самих изделий, быстро и без значительных затрат.
Можно использовать для литейного производства — то есть изготовление пресс-форм и создания моделей.
На 3D принтере можно напечатать необходимые предметы и вещи личного использования, игры, учебные материалы, сувениры.
3D принтеры служат для изготовления готовых систем из долговечного и прочного материала, например, для создания готовых частей и моделей беспилотных самолетов.
В медицине — использование принтеров позволяет выращивать образцы внутренних органов

Это очень важно для оценки их врачами перед операцией или для построения полноценных частей тела, при изготовлении протезов в стоматологии или замене костей и суставов в хирургии.

Принципы работы 3D принтера

Принципы работы 3D принтера базируются на технологиях лазерного спекания или лазерной печати, плавления пластика на слои, ламинирования, полимеризации или плавления лазером порошка различного состава, вакуумной плавки порошка и послойного склеивания тонкой пленки рабочего материала (например, бумаги). Дешевые принтеры позволяют печатать только одним материалом. Более дорогие модели имеют две и больше печатающие головки, что позволяет одновременно печатать несколькими различными материалами или несколькими цветами одного и того же материала. Существуют модели 3D принтеров для печати полноцветных изделий. В зависимости от производителя принтера и модели, как материал для печати могут использоваться: пластик, различные порошки, силикон, фотополимерная смола, металл, воск.

Технологии 3D-печати

Кратко об основных методах 3D-принтинга.

Стереолитография (SLA). В стереолитографическом принтере лазер облучает фотополимеры, и формирует каждый слой по 3D-чертежу. После облучения материал затвердевает. Прочность изделия зависит от типа полимера — термопластика, смол, резины. 

Цветную печать стереолитография не поддерживает. Из других недостатков — медленная работа, огромный размер стереолитографических установок, а еще нельзя сочетать несколько материалов в одном цикле.

Эта технология — одна из самых дорогих, но гарантирует точность печати. Принтер наносит слои толщиной 15 микрон — это в несколько раз тоньше человеческого волоса. Поэтому с помощью стереолитографии делают стоматологические протезы и украшения. 

Промышленные стереолитографические установки могут печатать огромные изделия, в несколько метров. Поэтому их успешно применяют в производстве самолетов, судов, в оборонной промышленности, медицине и машиностроении. 

Селективное лазерное спекание (SLS). Самый распространенный метод спекания порошковых материалов. Другие технологии — прямое лазерное спекание и выборочная лазерная плавка.

Метод изобрел Карл Декарт в конце восьмидесятых: его принтер печатал методом послойного вычерчивания (спекания). Мощный лазер нагревает небольшие частицы материала и двигается по контурам 3D-чертежа, пока изделие не будет готово. Технологию используют для изготовления не цельных изделий, а деталей. После спекания детали помещают в печь, где материал выгорает. SLS использует пластик, керамику, металл, полимеры, стекловолокно в виде порошка.

Технологию SLS используют для прототипов и сложных геометрических деталей. Для печати в домашних условиях SLS не подходит из-за огромных размеров принтера.

Послойная заливка полимера (FDM), или моделирование методом послойного наплавления. Этот способ 3d-печати изобретен американцем Скоттом Крампом. Работает FDM так: материал выводится в экструдер в виде нити, там он нагревается и подается на рабочий стол микрокаплями. Экструдер перемещается по рабочей поверхности в соответствии с 3D-моделью, материал охлаждается и застывает в изделие. 

Преимущества — высокая гибкость изделий и устойчивость к температурам. Для такой печати используют разные виды термопластика. FDM — самая недорогая среди 3D-технологий печати, поэтому принтеры популярны в домашнем использовании: для изготовления игрушек, сувениров, украшений. Но в основном моделирование послойным наплавлением используют в прототипировании и промышленном производстве — принтеры довольно быстро печатают мелкосерийные партии изделий. Предметы из огнеупорных пластиков изготовляют для космической отрасли. 

Струйная 3D-печать. Один из первых методов трехмерной печати — в 1993 году его изобрели американские студенты, когда усовершенствовали обычный бумажный принтер, и вскоре технологию приобрела та самая компания 3D Systems. 

Работает струйная печать так: на тонкий слой материала наносится связующее вещество по контурам чертежа. Печатная головка наносит материал по границам модели, и частицы каждого нового слоя склеиваются между собой. Этот цикл повторяется, пока изделие не будет готово. Это один из видов порошковой печати: раньше струйные 3D-принтеры печатали на гипсе, сейчас используют пластики, песчаные смеси и металлические порошки. Чтобы сделать изделие крепче, после печати его могут пропитывать воском или обжигать.

Предметы, которые напечатали по этой технологии, обычно долговечные, но не очень прочные. Поэтому с помощью струйной печати делают сувениры, украшения или прототипы. Такой принтер можно использовать дома. 

Еще струйную технологию используют в биопечати — наносят живые клетки друг на друга послойно и таким образом строят органические ткани. 

Управление процессом печати

Как правило, пользователю нужно произвести ряд настроек непосредственно перед началом печати.

  1. Подключение оборудования к ПК осуществляется через USB-кабель.
  2. Калибровка перемещения сопла относительно платформы.
  3. Настройка и управление нагревом платформы и сопла-дозатора.
  4. Мониторинг соотношения температур.
  5. Управление процессом печати (экструдером) – настройка скорости подачи материала, замена бобин пластика.

Контроль над печатью осуществляется через ПК. Для создания объекта от идеи до результата пользователю необходимы специальные программы для трехмерного моделирования и управления аппаратом.

Перед запуском печати оператор калибрует принтер, настраивая его относительно стола-платформы. Базовая прошивка принтера представляет собой ряд настроек по умолчанию, а пользователь производит более точные настройки, в зависимости от используемого материала. Так, для создания объемных элементов на основе ABS или PLA задается разная температура плавления. В процессе печати, оператор через ПО следит за работой. Весь процесс создания модели может занимать от нескольких часов до суток, здесь ключевым фактором является точность исполнения: точные объекты с детальной прорисовкой производятся дольше, чем более грубые.

Как работает 3D-принтер?

Мир 3D-принтеров сложен, поэтому первую часть статьи мы посвящаем описанию принципов работы. Считаем очень важным продумать выбор оптимального типа устройства в зависимости от используемой технологии печати.

Обязательно выберите подходящее техническое решение, так как оно дает дополнительные возможности печати. Ключевым критерием является также материал, из которого «пишет» принтер. Можно использовать несколько видов пластика. Не забывайте размер области печати, который является пределом размера получаемых продуктов.

Наиболее важные параметры включают уровень печати и используемую систему координат. Относительное перемещение двух или трех осей определяет эффективность и скорость работы. Не пренебрегайте дополнительным оборудованием и другими параметрами печати при покупке.

Принцип работы 3D-принтера

Вы когда-нибудь задумывались, как напечатать что-нибудь трехмерное? Принцип работы классических принтеров понятен, по сути это автоматическая простая печать. Но как возможно, имея простой компьютер, на котором вы задаете несколько команд и через несколько десятков минут вы держите в руках физический объект?

Когда 3D-печать только зарождалась, все изобретатели строго хранили свои технологии. Это привело к развитию целого ряда различных технологий. Основной принцип прост: вы предоставляете принтеру цифровую модель необходимого объекта и производственный материал.

Технологии различаются в зависимости от того, какой процесс использует принтер. Также существуют разные типы подходящих материалов.

Тип технологии

Результат 3D-печати всегда выглядит одинаково, но путь, ведущий к нему, — может быть разный. К сожалению, в статье нет места, чтобы рассмотреть все возможности. Итак, опишем хотя бы самые распространенные технологии. Они называются FDM, SLA и SLS.

  • FDM (Fusion Deposition Modeling) — тонкая полоска материала плавится при температуре 200 °C в видимых слоях, качество зависит от материала и уровня принтера. Обычно отличается более низкой ценой.
  • SLA (стереолитография) — постепенное отверждение материала с использованием света разных длин волн, высокое разрешение, чистота получаемого объекта, высокая стоимость оборудования и материала. Эта технология самая старая.
  • SLS (Selective Laser Sintering) — как вы уже догадались по названию, эта технология использует лазер для спекания материала. В данном случае материал имеет форму порошка, поэтому эти принтеры иногда называют «пылью».

Многие индивидуальные параметры являются производными от этих технологий. Однако, как отдельные лица, так и небольшие компании, вы почти всегда будете сталкиваться с первой системой. Причина в том, что цена его приобретения и эксплуатации в несколько раз ниже. Поэтому мы сосредоточимся исключительно на технологии FDM.

Технологические решения

Это еще один важный вопрос, на который следует ответить перед покупкой. Существует два различных варианта — с открытым исходным кодом и проприетарный дизайн.

Открытый исходный код, то есть открытое решение, облегчает работу мастерам и школам. Вся документация и принцип работы находятся в свободном доступе, и каждый может модифицировать и улучшать свое устройство по своему желанию. Вы можете купить запчасти у нескольких разных компаний, что положительно сказывается на их доступности и более низкой цене.

Закрытое решение дадут вам уверенность в том, что вы точно знаете, что покупаете. Производитель гарантирует адекватный уровень печати и используемых материалов. С лицензией с открытым исходным кодом вы можете приобрести устройство, носящее имя известной компании, но никогда нельзя быть уверенным, что оно не подвергалось модификации перед продажей, которая снизила уровень.

Закрытое решение работает как классическая бизнес-модель — все технические характеристики лицензированы производителем, без ведома которого они не могут быть изменены.

Поэтому понятно, что более крупные компании или медицинские учреждения стремятся к закрытому решению. Частные лица и ИТ-любители, предпочитают Open Source, что дает им больше возможностей для самореализации.

Стереолитография

Стереолитография использует свет для “выращивания” объектов в емкости с фотополимерной смолой. Как и в прочих технологиях 3D-печати, изделие образуется слой за слоем, здесь — при отверждении жидкого фотополимера светом.

От FDM стереолитография отличается более монолитными принтами, даже с одинаковой заданной толщиной слоя.

На фото: принты FDM и SLA, слой обеих моделей — 0,1 мм.

Дело в разнице в технологиях — фотополимерная засветка дает более аккуратные слои, чем расплавленный филамент выдавливаемый из сопла FDM-принтера.

SLA и DLP — две разновидности стереолитографии. SLA — лазерная стереолитография, DLP — цифровая проекция. Различие между ними в том, что в SLA источником света служит лазер, а в DLP — проектор.

Независимо от технических особенностей, принцип работы устройств SLA и DLP схож. Для запуска печати необходимо опустить специальную платформу построения в емкость с жидкой фотополимерной смолой.

Платформа останавливается на высоте одного слоя от дна емкости. Происходит засветка источником света принтера. Жидкий полимер, под воздействием света, становится твердым и прилипает к платформе построения. После этого платформа поднимается на высоту еще одного слоя и процесс повторяется.

SLA-принтер на примере Formlabs Form 2

SLA дает более гладкие поверхности, по сравнению не только с FDM, но и с DLP, о которой рассказываем далее.

Так получается потому, что DLP проецирует слои картинкой из пикселей, а луч лазера в SLA движется непрерывно, что дает ровный, не пикселизованный слой.

DLP в тех же целях использует проектор, а LED DLP — ЖК-дисплей с ультрафиолетовой подсветкой. В этих конструкциях свет проецируется на смолу по всей площади слоя одновременно, что дает преимущество в скорости, когда необходима печать крупных объектов с заполнением в 100% — полная засветка слоя происходит быстрее, чем в SLA.

Но при печати мелких или пустотелых объектов SLA быстрее, так как интенсивность засветки лазерным лучом, а значит и скорость полимеризации, выше.